ICP-MSによるナノ粒子解析法の開発 溝渕 勝男(1)・板垣 隆之(2)・遠藤 政彦(1)・山中理子(2) アジレント(1)・アジレントインターナショナル(2)

はじめに

ナノテクノロジーの発展は、幅広い業界に大きな影響を及ぼ すと予測される。ICP-MSは単一粒子 (single particle, sp) ICP-MS(sp-ICP-MS)と呼ばれる手法を用いることにより、個々のナ ノ粒子(nano particle, NP) 測定が可能である。このアプローチ により、個数濃度、元素組成、粒子サイズ、サイズ分布などの 結果を得ることができる。ICP-MS は、走査型電子顕微鏡法 (SEM) や透過電子顕微鏡法 (TEM)、原子間力顕微鏡法 (AFM) などの手法にくらべて、迅速でサンプル前処理もほとんど必要 としない[1-4]。

7900 ICP-MS は、100usのデータ採取およびセトリング時間も不 要(高速TRAモード)なので、連続した高速データ採取が可能 である。これにより、1つの粒子イベント内における様々な測定 が実現されことになり、単一ナノ粒子に由来する信号の統合、 および複数の粒子に対しても信号のオーバーラップの解消を もたらす。また、サンプル希釈に対しても、より幅広い柔軟性 をもたらす。

この発表では、単一ナノ粒子アプリケーションモジュール (G5714A)で構成されるICP-MS MassHunter ソフトウェアおよび Agilent 7900 ICP-MS による金(Au)および銀(Ag)のNPリファレン スマテリアルを用いた測定を紹介し、そこで得られた粒子サイ

装置及び一般的な設定

Agilent 7900 ICP-MS および単一粒子アプリケーション用 MassHunterソフトウェアをデータ採取および解析に用いた。主な パラメータをTable 1に示す。

	•		
RF パワー	1550 w		
サンプリング深さ	7 mm		
キャリアガス	0.76 I/min		
サンプル取り込みレート	0.35 ml/min		
スプレイチャンバー温度	2 °C		
ドウェル時間	100 µsec		
セトリング時間	0 sec		
データ採取時間	60 sec		

Table 1 ICP-MS パラメータ

ナノ粒子NPsの時間分析(TRA)

NP測定は時間分析(TRA)データとしては狭いピーク幅になり、そ のピークの強度は粒子質量に依存する。標準的なピークはFig.3 に示す。高速TRAモード(100 µsec のドウェル時間、セトリング時 間なし)により、単一ナノ粒子からのイオンプルームの形状と持続 時間を測定できるようになる。

Table 2 Au NPs 分析結果

サンプル	濃度 測定値 (個/I)	濃度 測定値 (ng/l)	粒子サイズ 測定値 (nm)	溶液 測定濃度 (ng/l)	BED (nm)	TEMによる 参照粒子サイズ (nm)
NIST 8013 (50 ng/l)	2.66 x 10 ⁷	50.4	55.2	0.027	4.8	56.0 ± 0.5
NIST 8012 (<mark>5</mark> ng/L)	2.39 x 10 ⁷	4.8	26.4	0.008	3.2	27.6 ± 2.1

Au NPs 溶液の分析

60 nm Au NPsと溶液の割合が異なる2種類のサンプルを準備し て分析を行った。得られた時間分析のデータ(Fig. 5)から、ベース ライン付近に溶液由来のシグナルを見ることができる。Table 3は 分析結果を示しており、得られた測定濃度と用意された溶液濃 度がよく一致していることが分かる。また、得られた粒子サイズ はTEMによって得られる参照値ともよく一致していることが分か る。BEDがTable 2にくらべて大きくなった要因は、溶液のバックグ ランドが高かったことに影響された結果と言える。

ズと濃度情報を既知の値と比較する。

実験

リファレンスマテリアルおよびサンプル

金 NPs

➢ NIST 8013: nominal 60 nm 粒径 (56.0 ± 0.5 nm by TEM) ➢ NIST 8012: nominal 30 nm 粒径 (27.6 ± 2.1 nm by TEM)

銀 NPs

Sigma-Aldrich nominal 20 nm, 40 nm, 60 nm, 100 nm

サンプル前処理

すべてのリファレンスマテリアルとサンプルは、10%エタノー ル脱イオン水溶液で 50 ~ 1000 ng/L に希釈。5 分間超音波 処理してサンプルを均一に分散させた。

セットアップ

MassHunter用単ーナノ粒子アプリケーションモジュールに付 属される「シングルパーティクル分析」(Fig. 1)でセットアップを 行った。

従来	の分析
◎ ス⁄	ペクトル/TRA
ス/ TR	ペクトル: 従来の質量スペクトルを測定します。 A: 従来の時間分析データを測定します。
ナノ	パーティクル
● シ)	ングルパーティクル分析
シ	ングルパーティクルを、高速TRAモードを使用して測定します。
○ シ:	ングルパーティクル中の複数の同位体
シ	ングルパーティクル中の2種の同位体を、高速TRAモードを使用して測定します。
パ・	ーティクルをフィールドフローフラクショネーションを使用して測定します。

Fig. 3ドウェルタイム100 µsecの高速 TRAモードで採取したナノ粒子イベント (A: 広範囲表示, B: 30 nm および 60 nm の Au NP のピークの拡大表示)

シグナル分布

時間分析データに対して、シグナル全体からノイズがキャンセル される。次に、Fig. 3 Bに示されるようなNPイベント(ピーク)が検出 され積分される。シグナル分布(Fig. 4)はこのようにして作成され た新しいデータセット全体から計算される。また、パーティクル検 出閾値はこの分布から計算される。

Table 3 Au NPs溶液の分析結果

Sample	測定 濃度値 (個/I)	測定 濃度値 (ng/l)	粒子サイズ 測定値 (nm)	溶液 測定濃度 (ng/l)	BED (nm)	TEMによる 参照粒子サイズ (nm)
NIST 8013 (50 ng/l) + Au lon (0.5 ng/l)	2.63 x 10 ⁷	50.9	55.5	0.55	13.0	56.0 ± 0.5
NIST 8013 (50 ng/l) + Au lon (1.00 ng/l)	2.78 x 10 ⁷	52.6	55.5	1.01	16.0	56.0 ± 0.5

Ag NPsの分析

単一ナノ粒子サイズに対する優れた分解能だけでなく、sp-ICP-MSでは異なるサイズ群中でも粒子数を定量することができる。 Fig. 6に異なるAg NPサイズの分析結果を示す。Agilent 7900 ICP-MSが非常に高感度であるために、20nmと非常に小さい粒径の Ag NPも容易に測定することができる。得られた混合(20 nm, 40 nm, 60nm, 100 nm) Ag NP粒子に対するパーティクル径分布から、 優れた分解能の結果が得られていることが分かる。

> Particle Size Distribution (Sample) : 001SMPL.c Particle Size Distribution (Sample) : 009SM

Fig.1メソッドウィザードのナノ粒子モード選択画面

NP分析に必要ないくつかの計算パラメータは、セットアップ (Fig.2)で予め用意された値が適用され、他のパラメータは自 動的に計算される。

- サンプル流量:この値は噴霧効率のために用いられる。こ こでは、自動的にペリポンプのスピードとチューブ内径を 基に計算される。
- リファレンスマテリアル:リファレンスマテリアル濃度はNIST に規定され、噴霧効率を計算するために使われる。この情 報はソフトウェアが保有するデータベースから自動的に使 用される
- 元素密度:この値は噴霧効率と粒子サイズの計算に用い られる。この値は、設定された元素に関してソフトウェアが 保有するデータベースから自動的に適用される。
- パーティクル検出閾値: この値は、ノイズやイオンから粒子 を区別するための下限値を示す。測定されたデータが分 析される際に自動的に計算される。

濃度情報と粒子サイズ
シグナル分布の計算によって得られたデータセットが、以下の式 で適用される。
粒子個数濃度 (パーティクル数/I), C_p , は式(1)で計算される。 $C_p = N_p \times \frac{1}{\eta_n} \times \frac{1}{V} \times \frac{1}{T} \times 10^3$ (1) ここで、 N_p は検出された粒子数, η_n は噴霧効率, V はサンプル
流量 (ml/min), T は全測定時間 (min)を示す。
粒子質量濃度 (ng/l), C_m , は式(2)で計算される。 $C_m = \frac{\sum m_p}{10^3} \times \frac{1}{\eta_n} \times \frac{1}{V} \times \frac{1}{T}$ (2)
ここで、 m_p は粒子質量 (fg)を示す。
球形であることが前提とされる粒子径 (nm), <i>d_p</i> , は式(3)で計算さ れる。
$d_p = \sqrt[3]{\frac{6}{\pi} \times \frac{m_p}{10^{15} \times \rho_p}} \times 10^7 \tag{3}$
ここで、 $ ho_p$ は粒子の元素密度 (g/ml)を示す。
溶液濃度とBED
粒子サイズの計算に加えて、溶液濃度とBED(Background Equivalent Diameter,バックグラウンド相当粒径)が計算される。 溶液濃度 (ppb), <i>C_{ion}</i> , は溶解溶液濃度を意味しており、式(4)で計 算される。
$C_{ion} = \frac{I_{noise}}{2} \tag{4}$
。 ここで、 <i>I_{noise} はノイズ信号に対する強度の大きさ(cps), s</i> は装置 に対するレスポンス (cps/ppb)を示す。

100 nm, E: mixture of 20, 40, 60, 100nm)

ssHunter メソッドウィザート

シングルパーティクル分析のコンフィグレーション シングルパーティクル分析のためのパラメータを設定してください。

サンプル送液用チューブの内径:	1.02 mm -	
サンプル流量:	0.346	ml/min
レスポンス係数用キャリブレーション溶液:		
197 amuでの標準溶液の濃度:	1.000	ppb
リファレンスマテリアル:	NIST RM 8012 -	
リファレンス元素の質量数:	197	amu
リファレンスマテリアルの平均粒径:	27	nm
リファレンスマテリアルの密度:	19.32	g/cm ³
リファレンスマテリアルの濃度:	5.0	ng/l
<u>未知サンプル:</u>		
測定元素の質量数:	197	amu
測定元素のモル質量比:	1.000	
パーティクルの密度:	19.32	g/cm ³
ヘルプ	<前/	\(B) 次へ >(N) 完了(E)

Fig. 2 メソッドウィザードであらかじめ設定されているパラメーター

キャンセル

BED (nm) は、粒子サイズの検出下限に対する指標となり得る。 バックグラウンド相当質量 (fg), *m_{bkgnd}*, は式(5)で計算される。 $m_{bkgnd} = I_{noise} \times \frac{1}{s} \times \frac{t_d \times 10^{-6}}{60} \times V \times \eta_n \times 10^{6}$ (5) ここで、 t_d はドウェル時間 (µsec)を示す。式(3)から、BED, d_{bkgnd},は式(6)で計算される。 $d_{bkgnd} = \sqrt[3]{\frac{6}{\pi} \times \frac{m_{bkgnd}}{10^{15} \times \rho_n}} \times 10^7$ (6) 結果と考察 Au NPsの分析

60 nm Au NP(NIST8013)、30 nm Au NP(NIST8012)を用意し測定を 行った。Table 2はその解析結果を示している。得られた濃度測定 値は、用意された溶液濃度とよく一致していることが分かる。ま た、測定粒子サイズもTEMによって測定された参照値ともよく一 致していることが分かる。

本発表では、単一粒子をICP-MSで測定する複雑なデータ処 理を含んだ解析法を確立した。単一ナノ粒子に特化した Agilent 7900 専用ソフトウェアは、金(Au)および銀(Ag)のナノ粒 子の測定および特性解析において非常に優れていることが 確認された。単一粒子をICP-MSで測定することにより、用いら れたサンプルに対して、粒子サイズ、サイズ分布、粒子濃度 および溶液濃度の優れた結果を得ることができた。

参照

[1]C. Degueldre, P. Favarger, Colloids Surf., A 2003, 217(1-3),137-142

[2]H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, C. P. Higgins and J. F. Ranville, Anal. Chem., 2011, 83, 9361-9369 [3]J. W. Olesik and P. J. Gray, J. Anal. At. Spectrom., 2012, 27, 1143-1155

[4]Sun, X.; Tabakman, S.M.; Won-Seok, S.; Zhang, K.; Zhang, G.; Sherlock, S.; Bai, L; Dai, H. Separation of Nanoparticles in a Density Gradient: FeCo@C and Gold Nanocrystals. Ang. Chem. 2009, 48, 939-942.