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Introduction
China is the world’s largest producer of rice, which is a vital staple food for almost 
half of the world’s population. Given the huge global demand for rice, varieties with 
higher value are a target for food fraudsters, who routinely adulterate or mislabel 
expensive food items for financial gain. The price of rice in China depends greatly on 
where the plants are grown, so producers use Geographical Indication (GI) to 
differentiate their products in the marketplace. Rice that is promoted based on its 
region of origin is more vulnerable to adulteration whenever demand for the product 
is higher than the amount that can be produced. Methods of food fraud include 
partial or total substitution of authentic product with lower grade product and 
inaccurate product labeling. Determining the geographical origin of rice is important 
for farmers, retailers, and consumers, as each group can be impacted financially by 
food fraud (1). Verifying food origin and authenticity is also crucial for food safety 
and regulatory compliance. If food suppliers, manufacturers, or retailers are found 
supplying contaminated or incorrectly labeled products, they may be fined or 
prosecuted. 
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The elemental composition of food crops and processed 
foods varies with respect to plant variety, soil type, 
environmental factors, and agricultural practices including 
irrigation and use of fertilizers. The analysis of a wide range of 
elements in foods is often performed using ICP-MS, following 
microwave-assisted acid digestion of samples (2–4). The 
results provide an “elemental fingerprint” of each sample that 
is representative of the sample’s geographic origin. This 
information is useful for authentication studies and has been 
applied to foods including tea and spices (5, 6). 

Agilent ICP-MS systems include the Octopole Reaction 
System (ORS4) collision/reaction cell (CRC) that is optimized 
for removal of all common polyatomic overlaps using helium 
(He) collision mode. Helium mode allows the same cell 
settings to be used for many elements, providing high-quality 
data sets needed for food-authenticity studies. Agilent 
ICP-MS data is compatible with Agilent Mass Profiler 
Professional (MPP), a chemometrics software package that is 
designed to process large sets of MS data. MPP includes a 
choice of data classification methods, enabling analysts to 
build robust models to predict attributes (such as sample 
origin) of unknown samples.

In this study, trace-element data for 90 rice samples of known 
geographical origins was acquired using an Agilent 7900 
ICP-MS. The large sample data set was then processed using 
MPP software. Once it was determined that the origin of each 
sample could be differentiated using Principal Component 
Analysis (PCA), the MPP software was used to build 
prediction models using different class prediction algorithms. 
The prediction models were then used to identify the origins 
of 24 ‘unknown’ test samples. 

Experimental
Instrumentation
An Agilent 7900 ICP-MS equipped with an Agilent SPS 4 
autosampler was used for all measurements. The 7900 
includes a glass concentric nebulizer, quartz double-pass 
spray chamber, 2.5 mm injector quartz torch, Ni interface 
cones, and ORS4 cell. The instrument was controlled using 
Agilent ICP-MS MassHunter software, and data analysis was 
performed using MPP software. The functions described are 
available in MPP version 15.0 or later. The typical instrument 
operating parameters are given in Table 1.

Table 1. Agilent 7900 ICP-MS operating conditions.

Parameter Setting

RF Power (W) 1550

Sampling Depth (mm) 8

Nebulizer Gas (L/min) 1.16

Lens Tune Autotune

He Flow Rate (mL/min) 5

KED (V) 5

Calibration standards
Calibration standards for 24 elements were prepared from 
Agilent standard solutions using 5% (v/v) nitric acid (HNO3) 
solution for dilution. The standards included: multi-element 
calibration standard-2A (part number 8500-6940), multi-
element calibration standard-4 (p/n 8500-6942), and 
environmental calibration standard (p/n 5183-4688). The 
rhodium (Rh) internal standard (ISTD) solution was prepared 
from a single element Rh standard (p/n 5190-8509). The 
calibration standards, except mercury (Hg), were premixed no 
longer than 24 hours before analysis. Hg was added into the 
mixture just before use. 

Reagents, reference material, and samples 
Nitric acid (69%) was bought from Merck Millipore 
(Darmstadt, Germany). De-ionized water (DIW, 18.2 MΩ·cm) 
was obtained from a Milli-Q system (Millipore, MA, USA). 

A Rice Flour Standard Reference Material (SRM) 1568b was 
bought from the National Institute of Standards and 
Technology (NIST, Gaithersburg, MD, USA). 90 rice samples of 
known origins (GI designated products) were collected 
directly from rice processing factories in five provinces in 
China: 15 samples from each province, except for 30 samples 
of two varieties collected from Liaoning. The locations 
included: Wuchang, Heilongjiang; Panjin, Liaoning (two lots of 
sample of different types); Sheyang, Jiangsu; Jingshan, Hubei; 
and Guigang, Guangxi. The samples were labeled as HLJ, 
LN-1, LN-2, JS, HB, and GX, respectively.

Sample preparation 
All lab materials including digestion vessels were soaked in a 
30% (v/v) HNO3 solution for 24 h and rinsed three times with 
DIW before use. Approximately 0.5 g of rice sample was 
weighed into a polytetrafluoroethylene (PTFE) digestion 
vessel and mixed with 6 mL HNO3. The sample was 
predigested by placing the vessel in a fume hood overnight. It 
was then transferred into the microwave oven (Anton Paar, 
Austria) for acid digestion using the heating program shown 
in Table 2. 
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After digestion, the solution was cooled to room temperature 
and diluted to 50 mL with DIW. The NIST-1568b SRM was 
analyzed with every batch of rice samples to verify the 
digestion method. 

Table 2. Typical microwave digestion parameters.

Stage Time (min) Temperature (°C)

Ramp 15 Ambient to 180

Hold 20 180

Cool Approx. 45 180 to ambient

Results and discussion
Detection limits (DLs) and background equivalent 
concentrations (BECs)
The typical 7900 ICP-MS DLs and BECs calculated from the 
ICP-MS MassHunter calibrations for the 24 elements are 
shown in Table 3.

Table 3. DLs and BECs of the 24 elements measured in this study.

Element DL 
(µg/L)

BEC 
(µg/L)

Element DL 
(µg/L)

BEC 
(µg/L)

11 B 0.33 0.064 60 Ni 0.012 0.047

23 Na 0.091 1.03 63 Cu 0.0011 0.016

24 Mg 0.092 0.075  66 Zn 0.018 0.18

27 Al 0.37 0.47 75 As 0.0020 0.0020

39 K 0.39 11.90 78 Se 0.048 0.019

44 Ca 0.030 0.137 85 Rb 0.00001 0.0009

47 Ti 0.0064 0.0021 88 Sr 0.0015 0.0006

51 V 0.0015 0.0007 95 Mo 0.0011 0.0019

52 Cr 0.0021 0.014 111 Cd 0.0039 0.0049

55 Mn 0.0037 0.0042 137 Ba 0.0033 0.0069

56 Fe 0.022 0.13 201 Hg 0.0001 0.0009

59 Co 0.0005 0.0062 208 Pb 0.0097 0.12

SRM recoveries
The NIST-1568b rice flour SRM was analyzed two or three 
times during each batch run to verify the accuracy and 
precision of the method. The results from four separate batch 
runs are shown in Table 4. The mean concentrations were in 
good agreement with the certified concentrations (80–120% 
recoveries) for all elements apart from Hg. The low recovery 
for Hg was probably due to the instability of the low 
concentration of Hg in 5–8% HNO3 (7). 

Hg recovery would likely be improved significantly by adding 
HCl to the acid mix used for sample digestion and 
stabilization. HCl ensures that chemically unstable elements 
such as Hg are retained in solution. Any Cl-based polyatomic 
overlaps formed are easily controlled on Agilent ICP-MS 
systems using the standard He cell mode (8).

Table 4. Recovery and reproducibility data for certified elements in the NIST-
1568b rice flour SRM, n=10.

Element Certified Concentration, 
µg/g

Mean Measured 
Concentration,  

µg/g

Standard 
Deviation, 

µg/g

Mean  
Recovery, 

%

24 Mg 559 ± 10 540 27 97

27 Al 4.21 ± 0.34 4.11 0.15 98

39 K 1282 ± 11 1276 62 100

44 Ca 118.4 ± 3.1 114.3 8.3 97

55 Mn 19.2 ± 1.8 18.3 1.0 95

56 Fe 7.42 ± 0.44 7.30 0.30 98

59 Co* 0.0177 ± 0.0005 0.0170 0.0010 96

63 Cu 2.35 ± 0.16 2.29 0.15 98

66 Zn 19.42 ± 0.26 17.73 1.81 91

75 As 0.285 ± 0.014 0.269 0.020 94

78 Se 0.365 ± 0.029 0.351 0.026 96

85 Rb 6.198 ± 0.026 5.352 0.211 86

95 Mo 1.451 ± 0.048 1.405 0.110 97

111 Cd 0.0224 ± 0.0013 0.0197 0.0022 88

201 Hg 0.00591 ± 0.00036 0.00395 0.00127 67

208 Pb* 0.008 ± 0.003 0.009 0.001 116

*Reference value: not fully verified value but can be used interchangeably with certified value.
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ISTD stability
Rh was used as the ISTD because it was not expected to be 
present in the rice samples, unlike other potential ISTD 
elements such as Sc and Ga. Rh standard solution (1 mg/L) 
was mixed with the sample using a tee connector. The 
analytical sequence comprising half of all the rice samples 
was analyzed repeatedly over 10 hours. All the ISTD 
recoveries were within the ± 20% limit, as indicated by the red 
dotted lines shown in Figure 1. The results demonstrated that 
the 7900 ICP-MS has the robustness and high matrix 
tolerance for authenticity studies that require long-term runs 
of food digests.

Figure 1. ISTD recovery of sample analysis over 10 hours using the Agilent 
7900 ICP-MS.

Data mining using MPP software
The multi-element data batch files (90 rice samples, 24 
elements) were combined and imported into MPP 
chemometric software for statistical analysis. The software 
includes various tests such as t-test, analysis of variance 
(ANOVA), model building algorithms, correlation and 
clustering analysis, as well as extended capabilities for R 
algorithms. PCA (which is an unsupervised technique) was 
performed to see if there were significant differences between 
sample groups. The PCA technique evaluates the relative 
contribution of compounds to the separation of the groups. 
The three dimensional (3D)-PCA scores are shown Figure 2.

A total of 65% of the variance ratio was captured in the first 
three dimensions, PC1, PC2, and PC3 (Figure 2). A reasonable 
degree of separation of the 90 rice samples from five 
locations was achieved using 24 elements. The samples from 
HB, GX, and LN-1 were clearly separated from the other 
samples, while there was some overlap between samples 
from LN-2 and HLJ. According to the PCA loading plot 
generated from the MPP software, the differences were 
mainly driven by B, Na, Zn, and Cd for PC1, Al, Fe, Mn, and Sr 
for PC2, and Na, Cu, Se, and Rb for PC3. The results 
demonstrated the feasibility of using element concentration 
data to build a location prediction model, which could predict 
the geographical origin of unknown rice samples.

 

Figure 2. 3D-PCA scores of the 90 rice samples from five different locations 
(including two different varieties from Liaoning). The axes of the plot 
represent the top three components of the PCA results. 

Class prediction analysis
Class prediction analysis is a useful technique that enables 
new, unknown samples to be assigned to a previously 
determined group in an unbiased fashion. It is becoming an 
increasingly valuable tool in quality control of complex 
samples, such as wine and beer (9). 

MPP includes several class prediction algorithms (Figure 3). 
The choice of algorithms includes soft independent modeling 
of class analogy (SIMCA), random forest, linear discriminant 
analysis (LDA), partial least squares discriminant analysis 
(PLSDA), decision tree, support vector machine (SVM), naive 
bayes, and neural network. A classification model can be built 
using any of these class prediction algorithms. 

 

Figure 3. Agilent MPP software screen showing options for class prediction 
algorithms.
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Building a prediction model in MPP
Eleven of the 15 rice samples from each of the five locations 
(two sets from Liaoning) were selected randomly to build 
prediction models using four different class prediction 
algorithms (PLSDA, SVM, LDA, and SIMCA). The remaining 
four rice samples from each location (24 samples in total) 
were used as ‘unknowns’ to test the accuracy of the 
prediction models. To build a prediction model in MPP, the 
analyst simply follows a six-step automated workflow, with 
the software automatically skipping any unnecessary steps.

Table 5. Summary of the predicted location results for the 24 ‘unknown’ rice samples. 

Sample ID Actual Location

Prediction Model

PLSDA SVM LDA

Predicted Location Confidence 
Measure

Predicted Location Confidence 
Measure

Predicted Location Confidence 
Measure

GX-101 Guigang, Guangxi Guigang, Guangxi 0.762 Guigang, Guangxi 0.742 Guigang, Guangxi 0.776

GX-102 Guigang, Guangxi Guigang, Guangxi 0.476 Guigang, Guangxi 0.758 Guigang, Guangxi 0.658

GX-103 Guigang, Guangxi Guigang, Guangxi 0.606 Guigang, Guangxi 0.804 Guigang, Guangxi 0.830

GX-104 Guigang, Guangxi Guigang, Guangxi 0.769 Guigang, Guangxi 0.769 Guigang, Guangxi 0.865

HB-101 Jingshan, Hubei Jingshan, Hubei 0.632 Jingshan, Hubei 0.774 Jingshan, Hubei 0.667

HB-102 Jingshan, Hubei Jingshan, Hubei 0.739 Jingshan, Hubei 0.797 Jingshan, Hubei 0.760

HB-103 Jingshan, Hubei Jingshan, Hubei 0.770 Jingshan, Hubei 0.727 Jingshan, Hubei 0.811

HB-104 Jingshan, Hubei Jingshan, Hubei 0.531 Jingshan, Hubei 0.757 Jingshan, Hubei 0.850

HLJ-101 Wuchang, Heilongjiang Wuchang, Heilongjiang 0.423 Wuchang, Heilongjiang 0.415 Wuchang, Heilongjiang 0.733

HLJ-102 Wuchang, Heilongjiang Wuchang, Heilongjiang 0.651 Wuchang, Heilongjiang 0.731 Wuchang, Heilongjiang 0.901

HLJ-103 Wuchang, Heilongjiang Wuchang, Heilongjiang 0.659 Wuchang, Heilongjiang 0.777 Wuchang, Heilongjiang 0.873

HLJ-104 Wuchang, Heilongjiang Wuchang, Heilongjiang 0.635 Wuchang, Heilongjiang 0.724 Wuchang, Heilongjiang 0.802

JS-101 Sheyang, Jiangsu Sheyang, Jiangsu 0.637 Sheyang, Jiangsu 0.766 Sheyang, Jiangsu 0.834

JS-102 Sheyang, Jiangsu Sheyang, Jiangsu 0.494 Sheyang, Jiangsu 0.625 Sheyang, Jiangsu 0.866

JS-103 Sheyang, Jiangsu Sheyang, Jiangsu 0.526 Sheyang, Jiangsu 0.735 Sheyang, Jiangsu 0.918

JS-104 Sheyang, Jiangsu Sheyang, Jiangsu 0.562 Sheyang, Jiangsu 0.824 Sheyang, Jiangsu 0.914

LN1-101 Panjin, Liaoning-1 Panjin, Liaoning-1 0.576 Panjin, Liaoning-1 0.711 Panjin, Liaoning-1 0.881

LN1-102 Panjin, Liaoning-1 Panjin, Liaoning-1 0.738 Panjin, Liaoning-1 0.743 Panjin, Liaoning-1 0.893

LN1-103 Panjin, Liaoning-1 Panjin, Liaoning-1 0.546 Panjin, Liaoning-1 0.744 Panjin, Liaoning-1 0.450

LN1-104 Panjin, Liaoning-1 Panjin, Liaoning-1 0.594 Panjin, Liaoning-1 0.816 Panjin, Liaoning-1 0.838

LN2-101 Panjin, Liaoning-2 Panjin, Liaoning-2 0.769 Panjin, Liaoning-2 0.717 Panjin, Liaoning-2 0.832

LN2-102 Panjin, Liaoning-2 Panjin, Liaoning-2 0.593 Panjin, Liaoning-2 0.731 Panjin, Liaoning-2 0.774

LN2-103 Panjin, Liaoning-2 Panjin, Liaoning-2 0.763 Panjin, Liaoning-2 0.734 Panjin, Liaoning-2 0.863

LN2-104 Panjin, Liaoning-2 Panjin, Liaoning-2 0.535 Panjin, Liaoning-2 0.727 Panjin, Liaoning-2 0.745

Testing the prediction model
The predicted location results obtained using the PLSDA, 
SVM, and LDA models are shown in Table 5. The locations of 
all 24 samples were correctly identified using all three 
prediction models. A higher value (darker shading) in Table 5 
indicates greater confidence in a correct match.
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Table 6. The location results of the 24 ‘unknown’ rice samples predicted by the SIMCA model. Green: correct prediction; Amber: incorrect prediction; Red: actual 
location.

Sample ID Actual Location Prediction Algorithm

SIMCA

Distance (Guigang, 
Guangxi)

Distance (Wuchang, 
Heilongjiang)

Distance (Jingshan, 
Hubei)

Distance (Sheyang, 
Jiangsu)

Distance (Panjin, 
Liaoning-1)

Distance (Panjin, 
Liaoning-2)

GX-101 Guigang, Guangxi 0.857 8.050 2.901 8.363 7.635 3.254

GX-102 Guigang, Guangxi 0.203 9.422 4.627 7.672 8.797 4.865

GX-103 Guigang, Guangxi 0.221 11.803 2.816 8.288 8.953 3.522

GX-104 Guigang, Guangxi 0.195 8.879 3.965 7.573 8.219 3.801

HB-101 Jingshan, Hubei 3.759 11.049 0.255 9.807 6.379 4.664

HB-102 Jingshan, Hubei 5.279 10.986 0.527 10.328 5.746 5.411

HB-103 Jingshan, Hubei 5.179 10.519 0.343 9.809 5.585 5.048

HB-104 Jingshan, Hubei 4.126 10.093 0.367 9.026 5.288 4.650

HLJ-101 Wuchang, Heilongjiang 4.806 3.262 4.684 4.202 3.043 1.841

HLJ-102 Wuchang, Heilongjiang 7.328 0.370 6.634 2.685 3.246 1.511

HLJ-103 Wuchang, Heilongjiang 8.362 0.407 7.177 2.515 3.702 1.475

HLJ-104 Wuchang, Heilongjiang 8.740 0.630 7.133 2.351 3.012 1.895

JS-101 Sheyang, Jiangsu 14.174 6.839 16.351 0.141 2.901 4.514

JS-102 Sheyang, Jiangsu 12.018 6.895 14.477 0.647 2.830 4.234

JS-103 Sheyang, Jiangsu 12.831 6.750 16.327 0.292 3.003 2.786

JS-104 Sheyang, Jiangsu 12.003 7.809 17.050 0.146 4.089 3.750

LN1-101 Panjin, Liaoning-1 15.744 10.073 10.605 3.314 0.141 5.148

LN1-102 Panjin, Liaoning-1 18.586 8.118 12.548 3.465 0.302 6.626

LN1-103 Panjin, Liaoning-1 24.607 12.810 22.225 3.157 0.892 7.842

LN1-104 Panjin, Liaoning-1 17.242 12.822 12.874 5.091 0.193 6.848

LN2-101 Panjin, Liaoning-2 11.641 2.939 8.208 2.757 2.114 0.400

LN2-102 Panjin, Liaoning-2 11.823 2.944 9.358 3.014 2.573 0.266

LN2-103 Panjin, Liaoning-2 8.010 2.334 8.650 2.498 3.692 0.379

LN2-104 Panjin, Liaoning-2 9.582 3.681 9.425 2.805 3.444 0.570

The results for the same test samples obtained using the 
SIMCA model are shown in Table 6. The SIMCA model reports 
the results using ‘distance’, where the lower the value, the 
more likely the sample belongs to the classified group. The 
SIMCA model correctly predicted all but one rice sample 
(HLJ-101). HLJ-101, which was predicted to be most likely 
from the LN-2 group, also had low confidence values in the 
PLSDA and SVM models (Table 5). The PCA results suggested 
some similarities in the elemental profiles of HLJ and LN-2 
(Figure 2).
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Conclusion 
The Agilent 7900 ICP-MS with the ORS4 cell operating in 
helium collision mode was shown to produce data with high 
quality, robustness, and stability, which are essential for food 
authenticity studies. Using a single cell gas mode for all 
analytes enabled the detection of 24 elements in 90 rice 
sample digests. Data from 66 of the 90 rice samples was 
used to build prediction models for the characterization of the 
geographical origins of the remaining 24 samples.

Agilent MPP statistical software was used to process the 
large data set. Data analysis using PCA showed that the 
elemental composition of rice was influenced by geographical 
origins, allowing fairly good discrimination between five 
geographical areas. 

Four prediction models were built by following the simple 
steps in the MPP software. The models were trained using the 
ICP-MS data and tested using ‘unknown’ samples. The study 
showed that it was possible to correctly predict the origins of 
all the 24 ‘unknown’ samples using multiple prediction 
models, rather than a single prediction model. The multiple-
model approach could lead to more accurate prediction 
results and better understanding of the element profiles of 
samples. 

The elemental profiling method described in this study has 
the potential to characterize the geographical origin of rice, 
and other high value foodstuffs enabling routine authenticity 
analysis of foods.
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