

Author

Naoki Sugiyama Agilent Technologies, Tokyo, Japan

Using ICP-QQQ for UQ₂⁺ product ion measurement to reduce uranium hydride ion interference and enable trace ²³⁶U isotopic analysis

Application note Environmental, nuclear

Introduction

Uranium 236 is a long-lived radionuclide which is created from the naturally occurring trace isotope ²³⁵U (0.72% abundance) by thermal neutron capture. This process leads to a natural abundance of ²³⁶U in the range from 10^{-14} — 10^{-13} relative to the major ²³⁸U isotope (²³⁶U/²³⁸U). ²³⁶U is also created during the process of uranium enrichment for nuclear fuel or weapons, and as a waste product from the consumption of enriched uranium fuel in nuclear reactors. The ²³⁶U/²³⁸U ratio is increased up to 10^{-3} in spent nuclear fuel, with background levels in the environment increased up to around 10^{-7} — 10^{-8} as a result of global fallout [1]. The ²³⁶U/²³⁸U isotope ratio can therefore be used as a sensitive method to trace the accidental release of enriched uranium fuel, spent fuel and nuclear waste, and to investigate the effects of nuclear technology on the environment and human health. Consequently, instrumentation used in the accurate study of global fallout needs to perform ²³⁶U/²³⁸U isotopic ratio analysis at the < 10^{-9} level.

Acceleration Mass Spectrometry (AMS) is often used for U isotope studies, as its high sensitivity provides a detection limit for ²³⁶U/²³⁸U of 10⁻¹³ [2]. Since ICP-MS is more widely available than AMS and sample preparation is much simpler, a number of analysts have investigated ICP-MS for the analysis of ²³⁶U/²³⁸U [3, 4, 5]. The main challenges for ICP-MS for this application are the interference on ²³⁶U⁺ by the hydride ion ²³⁵UH⁺, and the contribution at m/z 236 from tailing of the ²³⁵U⁺ and ²³⁸U⁺ peaks. Hydride overlap and peak tailing are more problematic in samples that have been enriched, as these contain a higher proportion of ²³⁵U.

Tanimizu *et al* demonstrated that the ²³⁵UH⁺ interference could be effectively avoided using O₂ cell gas on an Agilent 8800 ICP-QQQ, in combination with sample introduction via a membrane desolvator [6]. The O₂ reaction gas reacts less readily with UH⁺ than with U⁺, so the UOH⁺ product ion forms to a lesser degree than UO⁺, allowing ²³⁶U to be measured as ²³⁶UO⁺, without a significant contribution from ²³⁵UOH⁺.

The problem of peak tailing can also be alleviated with ICP-QQQ, as MS/MS operation dramatically improves abundance sensitivity (AS) performance. AS is a measure of the contribution that the adjacent peaks (at M - 1 and M + 1) make to the target analyte mass. The AS of the Agilent ICP-QQQ's tandem MS configuration is the product of the abundance sensitivities of the two quadrupoles (Q1 AS x Q2 AS), so overall AS in MS/MS mode is <<10⁻¹⁰. This is several orders of magnitude better than the AS that can be achieved on conventional quadrupole ICP-MS or sector field ICP-MS, and the reduced contribution from peak tailing permits measurement of the $^{236}U/^{238}U$ ratio at the 10⁻¹⁰ level [6].

Agilent's second generation ICP-000, the Agilent 8900 Triple Quadrupole ICP-MS, was used for the analysis, as it offers high sensitivity and an extended mass range to allow the measurement of uranium as the oxide (UO⁺) and dioxide (UO_2^+) reaction product ions. In this work, uranium was measured via its dioxide ion, UO_2^+ , due to the efficient conversion (almost 100%) of U⁺ to UO₂⁺ with O, cell gas. For this approach to be successful, ICP-QQQ with MS/MS capability is necessary to give control of the reaction processes and product ions formed. The application is beyond the scope of conventional quadrupole ICP-MS (ICP-QMS), which lacks a mass selection step prior to the collision/reaction cell (CRC). For instance, when ²³⁶U is the analyte of interest, $^{236}U^{16}O^{16}O^+$ (at m/z 268) will suffer a severe overlap from ²³⁵U¹⁷O¹⁶O⁺, as ICP-QMS has no way to reject ²³⁵U⁺ before it enters the CRC. With ICP-QQQ, the first quadrupole (Q1) controls the ions that can enter the cell, so interisotope product ion overlaps cannot occur. This makes the approach of using UO⁺ or UO₂⁺ for isotopic analysis measurements both controllable and consistent.

Experimental

Instrumentation

An Agilent 8900 ICP-QQQ (#100, Advanced Applications Configuration) was used for all measurements. The instrument was fitted with a standard quartz torch with 2.5 mm injector, and the standard x-lens was used. A self-aspirating PFA nebulizer (part number G3139-65100) was used for sample delivery, to provide better washout compared to the standard glass concentric nebulizer and peristaltic pump. Plasma conditions were optimized for maximum sensitivity, leading to a slightly higher than normal total carrier gas flow rate and a CeO⁺/Ce⁺ of 1.8%. These plasma conditions did not significantly increase the level of UH⁺, as hydride ion formation is not dependent on carrier gas flow rate. Instrument operating conditions are given in Table 1.

Table 1. ICP-QQQ operating conditions

Parameter	Unit	Value
RF power	W	1550
Sampling depth	mm	8.0
Carrier gas flow rate	L/min	0.8
Makeup gas flow rate	L/min	0.30
Extraction 1 lens	V	-15
Extraction 2 lens	V	-250
Omega lens	V	12
Omega bias lens	V	-180
Octp Bias	V	0
KED	V	-10
Acquisition mode		MS/MS
Wait time offset	ms	10

Reagents

Uranium solutions were prepared at suitable concentrations by diluting SPEX multi element standard XSTC-331 (SPEX CertiPrep, Metuchen, NJ, USA) with de-ionized water. All sample, blank, and rinse solutions were spiked with high purity TAMAPURE 100 HNO₃ (Tama Kagaku, Saitama, Japan) to a concentration of 1%.

Results and discussion

$\rm UO^{+}$ and $\rm UO_{2}^{+}$ formation as a function of $\rm O_{2}$ cell gas flow rate

The rate of formation of UO⁺ and UO₂⁺ was studied as a function of O₂ cell gas flow rate. A solution containing 10 ppb uranium (1000x dilution of XSTC-331) was introduced into the ICP-QQQ. The signals of ²³⁸U⁺, ²³⁸U¹⁶O⁺, and ²³⁸U¹⁶O¹⁶O⁺ were measured via three mass pairs (Q1 \rightarrow Q2) = (238 \rightarrow 238), (238 \rightarrow 254) and (238 \rightarrow 270), and plotted against the O₂ cell gas flow rate. The octopole bias (Octp Bias) voltage was optimized to give the maximum UO₂⁺ signal (0 V).

Figure 1. U⁺ (238 \rightarrow 238), UO⁺ (238 \rightarrow 254), and UO₂⁺ (238 \rightarrow 270) as a function of O₂ cell gas flow rate

Figure 1 shows that U0⁺ formation reaches a maximum at an O_2 flow rate of 5% of full scale (equivalent to 0.074 mL/min as O_2), which is in good agreement with Tanimizu [6]. Above 0.075 mL/min flow rate, the formation of U0⁺ decreased, while the formation of U O_2^+ increased, reaching a maximum at an O_2 flow of 22% of full scale (0.33 mL/min). This indicates the conversion of U0⁺ to U O_2^+ via a chain reaction. The highest count of U O_2^+ at 22% flow rate far exceeded the counts of U⁺ at a flow rate of 0% (i.e. no gas mode). The 8900 was optimized for highest sensitivity for the U O_2^+ product ion, which may explain the apparent increase in sensitivity for U O_2^+ compared to U⁺.

Effect of product ion selection on hydride ion formation rate

The hydride ratio was measured at the optimal O_2 flow rate for U⁺ and each of the U-oxide product ions: $^{238}UH^+/^{238}UO^+, ^{238}UO^+, \text{ and } ^{238}UO_2H^+/^{238}UO_2^+.$

A sample containing 50 ppb U (200x diluted XSTC-331) was introduced as the test solution for the measurement of the hydride formation ratio. Ten replicate measurements were made, with integration times of 1s and 10s for the analyte and hydride ions respectively. The results, summarized in Table 2, show that measuring UO⁺ decreases the hydride ratio by a factor of ~20, while measuring UO₂⁺ leads to more than a three orders of magnitude improvement, reducing the hydride ratio to 10⁻⁸. The findings suggest the interference of ²³⁵U hydride on ²³⁶U could also be reduced by around three orders of magnitude by measuring ²³⁶U as the ²³⁶UO₂⁺ product ion.

Uranium detection limit

The detection limit (DL) of U was estimated using the UO_2^+ method. A blank solution was introduced and the signal of the three mass pairs (236 \rightarrow 268; 238 \rightarrow 270 and 239 \rightarrow 271) corresponding to ²³⁶U⁺ \rightarrow ²³⁶UO₂⁺; ²³⁸U⁺ \rightarrow ²³⁸UO₂⁺; and ²³⁸UH⁺ \rightarrow ²³⁸UO₂H⁺ were measured using an integration time of 10 s. The results in Table 3 are based on 10 replicate measurements. As shown, very low background counts were obtained for each of the mass pairs of interest. The DL for U was calculated from the concentration equivalent to three times the standard deviation of the background, using the sensitivity of ²³⁸UO₂⁺ given in Table 2 and the background for mass pair 238 \rightarrow 270 in Table 3. The DL for uranium was calculated to be 0.34 ppq (fg/g).

		U ⁺ analysis			UH ⁺ analysis			UH+/U+
	0 ₂ cell gas flow	Mass pair for U ⁺	Count	RSD	Mass pair for UH+	Count	RSD	
	%	01/02	cps	%	01/02	cps	%	
as U⁺	0	238/238	24168974	2.8	239/239	1578.5	0.6	6.53E-05
as UO⁺	5	238/254	14152816	4.2	239/255	48.9	4.3	3.46E-06
as UOO⁺	22	238/270	40527770	2.0	239/271	2.3	20.8	5.68E-08

Table 2. UH+/U+ ratios obtained by measuring uranium as U+, UO+ and UO_2+

Table 3. Blank signal and SD for mass pairs used for ²³⁶ U/ ²³⁸ U analysis
using UO_2^+ method with an O_2^- cell gas flow rate of 0.33 mL/min, n = 10

236→268		238→	270	239→271		
	Count-cps	SD cps	Count-cps SD cps		Count-cps SD cps	
	0.15	0.14	0.18	0.09	0.09	0.09

Conclusions

The Agilent 8900 ICP-QQQ operating in MS/MS mode with O₂ cell gas has been shown to be suitable for the measurement of U as its reaction product ion UO₂⁺. This approach was successful in reducing the contribution from the hydride ion (i.e. ²³⁵UH overlap on ²³⁶U), the formation of which was decreased by three orders of magnitude compared to direct, onmass measurement of U⁺. MS/MS mode with O_2 cell gas gave a $UO_{2}H^{+}/UO_{2}^{+}$ ratio in the 10^{-8} range, without the use of a desolvation system, suggesting that the approach could be successful in reducing the interference of ²³⁵UH⁺ on ²³⁶U⁺, even in samples containing enriched U. This has the potential to allow rapid trace-level measurement of ²³⁶U/²³⁸U isotopic ratios, providing valuable information on global fallout following accidental release of nuclear material into the environment.

Considering that the typical $^{235}U/^{238}U$ ratio is 7 x 10⁻³, our results suggest that the ^{235}UH interference on ^{236}U can be reduced sufficiently to allow $^{236}U/^{238}U$ measurement in the 10⁻¹⁰ range to be achieved using this method. The ultra-low instrumental background noise level and high sensitivity of the 8900 ICP-QQQ meant that a DL of uranium of 0.34 fg/g was achieved.

Based on previous studies, it is anticipated that a lower DL for U, and ²³⁶U/²³⁸U measurements with lower ²³⁶U abundance, could be achieved by combining the Agilent 8900 ICP-QQQ with sample introduction using a membrane desolvation system.

References

1. A. Sakaguchi, K. Kawai, P. Steiner, F. Quinto, et al, *Science of the Total Environment*, 2009, 407, 4238

2. F. Quinto, P. Steier, G. Wallner, A. Wallner et al, *Applied Radiation and Isotopes*, 2009, 67, 1775

3. S. F. Boulyga and J. S. Becker, Fresenius *J. Anal. Chem.*, 2001, 370, 612

4. S. F. Boulyga, U. Klötzli and T. Prohaska, *J. Anal. At. Spectrom.*, 2006, 21, 1427

5. J. G. Arnason, C. N. Pellegri and P. J. Parsons, J. Anal. At. Spectrom., 2015, 30, 126

6. M. Tanimizu, N. Sugiyama, E. Ponzevera and G. Bayon, J. *Anal. At. Spectrom.*, 2013, 28, 1372

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc. 2016 Published June 1 2016 Publication number: 5991-6553EN

Agilent Technologies